Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36677347

RESUMEN

Soil microbes play important roles in plant health and ecosystem functioning, however, they can often be disturbed or depleted in degraded lands. During seed-based revegetation of such sites there is often very low germination and seedling establishment success, with recruitment of beneficial microbes to the rhizosphere one potential contributor to this problem. Here we investigated whether Australian native plant species may benefit from planting seed encapsulated within extruded seed pellets amended with one of two microbe-rich products: a commercial vermicast extract biostimulant or a whole-soil inoculum from a healthy reference site of native vegetation. Two manipulative glasshouse trials assessing the performance of two Australian native plant species (Acacia parramattensis and Indigofera australis) were carried out in both unmodified field-collected soil (trial 1) and in the same soil reduced in nutrients and microbes (trial 2). Seedling emergence and growth were compared between pelleted and bare-seeded controls and analyzed alongside soil nutrient concentrations and culturable microbial community assessments. The addition of microbial amendments maintained, but did not improve upon, high levels of emergence in both plant species relative to unamended pellets. In trial 1, mean time to emergence of Acacia parramattensis seedlings was slightly shorter in both amended pellet types relative to the standard pellets, and in trial 2, whole-soil inoculum pellets showed significantly improved growth metrics. This work shows that there is potential for microbial amendments to positively affect native plant emergence and growth, however exact effects are dependent on the type of amendment, the plant species, and the characteristics of the planting site soil.

2.
Naturwissenschaften ; 108(6): 61, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34797399

RESUMEN

Nomadism is an advantageous life history strategy for specialised predators because it enables the predator to respond rapidly to changes in prey populations. The letter-winged kite (Elanus scriptus) is a nomadic nocturnal bird of prey endemic to arid and semi-arid zones of Australia. Letter-winged kites prey almost exclusively on nocturnal rodents and are often associated with rodent irruptions, but little is known about the ecology of letter-winged kites inside their core range. The Strzelecki Desert contains a known dingo-mediated predation refuge for native rodents. In this manuscript, we compare kite sightings, predator activity, and small mammal populations across survey sites in the Strzelecki Desert where dingoes were common and where dingoes were rare and use publicly available data from the Atlas of Living Australia (ALA) to assess trends in the occurrence of kites in the region. Ninety-five percent of ALA observations occurred in areas where dingoes were common. Similarly, all our observations of kites occurred where dingoes were common and during an extended population irruption of Notomys fuscus. Notomys fuscus was the most frequent item in the letter-winged kite diet at our study sites. We suggest that there is significant evidence that these sites in the Strzelecki Desert form part of the core range for the letter-winged kite whose use of this area is facilitated by a predation refuge for rodents mediated by the dingo. We conclude that predation refuges mediated by dingoes could be a factor driving the distributions of letter-winged kites and other predators of rodents, particularly nomadic predators.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Dieta , Mamíferos , Murinae
3.
Ecology ; 102(4): e03301, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33565639

RESUMEN

Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.

4.
J R Soc Interface ; 15(144)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973403

RESUMEN

Vegetation cover is fundamental in the formation and maintenance of geomorphological features in dune systems. In arid Australia, increased woody shrub cover has been linked to removal of the apex predator (Dingoes, Canis dingo) via subsequent trophic cascades. We ask whether this increase in shrubs can be linked to altered physical characteristics of the dunes. We used drone-based remote sensing to measure shrub density and construct three-dimensional models of dune morphology. Dunes had significantly different physical characteristics either side of the 'dingo-proof fence', inside which dingoes are systematically eradicated and shrub density is higher over vast spatial extents. Generalized additive models revealed that dunes with increased shrub density were higher, differently shaped and more variable in height profile. We propose that low shrub density induces aeolian and sedimentary processes that result in greater surface erosion and sediment transport, whereas high shrub density promotes dune stability. We speculate that increased vegetation cover acts to push dunes towards an alternate stable state, where climatic variation no longer has a significant effect on their morphodynamic state within the bi-stable state model. Our study provides evidence that anthropogenically induced trophic cascades can indirectly lead to large-scale changes in landscape geomorphology.


Asunto(s)
Canidae/fisiología , Clima Desértico , Cadena Alimentaria , Modelos Biológicos , Animales , Australia
5.
R Soc Open Sci ; 5(1): 171977, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29410877

RESUMEN

Functional extinction of once abundant species has frequently preceded understanding of their ecological roles. Consequently, our understanding of ecosystems is prone to shifting baselines because it often relies on observations made on depauperate species assemblages. In Australian deserts, current paradigms are that ants are the dominant granivores, mammals are unimportant seed predators and that myrmecochory in many Australian shrubs is an adaptation to increase dispersal distance and direct seeds to favourable germination sites. Here, we ask whether these paradigms could be artefacts of mammal extinction. We take advantage of a predator-proof reserve within which locally extinct native mammals have been reintroduced to compare seed removal by ants and mammals. Using foraging trays that selectively excluded mammals and ants we show that a reintroduced mammal, the woylie (Bettongia penicillata) was at least as important as ants in the removal of seeds of two shrub species (Dodonaea viscosa and Acacia ligulata). Our results provide evidence that the dominance of ants as granivores and current understanding of the adaptive benefit of myrmecochory in arid Australia may be artefacts of the functional extinction of mammals. Our study shows how reversing functional extinction can provide the opportunity to rethink contemporary understanding of ecological processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...